KAYNAKÇA
• Sul YT, Johansson CB, Jeong Y, Röser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response.
J Mater Sci Mater Med. 2001;12:1025–1031.
• Patil, P.S., ve Bhongade, M.L., (2016). Dental Implant Surface Modifications: A Review. IOSR Journal of Dental and Medical Sciences 15, 10, 132-14.
• Massaro, C., Rotolo, P., De Riccardis, F., Milella, E., Napoli, A., Wieland, M. ve Brunette, D.M., (2002).
Comparative investigation of the surface properties of commercial titanium dental implants.
Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 13, 6, 535- 548.
• Guo, C. Y., Matinlinna, J.P., Tsoi, J.K.H. ve Tang, A.T.H., (2015). Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a
Titanium Surface After Sandblasting. Silicon, 1-8.
• Hung, K.Y., Lin, Y.C. ve Feng, H.P., (2017). The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy
of Titanium Medical Materials. Materials, 10, 10, 1164
• Kim, H., Choi, S.H., Ryu, J.J., Koh, S.Y., Park, J.H. ve Lee, I.S., (2008). The biocompatibility of SLA-treated titanium implants.
Biomedical Materials, 3, 2, 025011.
• Bacchelli, B., Giavaresi, G., Franchi, M., Martini, D., De Pasquale, V., Trirè, A. ve Ruggeri, A., (2009).
Influence of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental
study in sheep, Acta biomaterialia, 5, 6, 2246-2257.
• Ban, S., Iwaya, Y., Kono, H. ve Sato, H., (2006). Surface modification of titanium by etching in concentrated sulfuric acid,
Dental Materials, 22, 12, 1115-1120.
• Conforto, E., Caillard, D., Aronsson, B. O. ve Descouts, P., (2002). Electron microscopy on titanium implants for bone replacement after “SLA”
surface treatment, European Cells and Materials, 3 (Supplement 1), 9-10
• Wong, M., Eulenberger, J., Schenk, R. ve Hunziker, E., (1995). Effect of surface topology on the osseointegration of implant materials in trabecular bone, Journal of Biomedical Materials Research Part A, 29, 12, 1567-1575.
• Williams KR, Watson CJ, Murphy WM, Scott J, Gregory M, Sinobad D. Finiteelement analysis of fixed prostheses attached to osseointegrated
implants. Quintessence Int. 1990;21(7):563-70.
• Abron, A., Hopfensperger, M., Thompson, J. ve Cooper, L.F., (2001). Evaluation of a predictive model for implant surface topography
effects on early osseointegration in the rat tibia model, Journal of Prosthetic Dentistry, 85,1, 40-46.
• Johnson BW. HA-coated dental implants: longterm consequences. J Calif Dent Assoc 1992; 20(6):33-41 Park, J.W., Jang, I.S. ve Suh, J.Y.,
(2008). Bone response to endosseous titanium implants surface modified by blasting and chemical treatment: A histomorphometric study in the
rabbit femur, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84, 2, 400-407.
• Yang, G.L., He, F.M., Yang, X.F., Wang, X.X. ve Zhao, S.F. (2008). Bone responses to titanium implants surface-roughened by sandblasted and
double etched treatments in a rabbit model, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 106, 4, 516-524.
• Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000;15(5):675-90.
• Perrin, D., Szmukler Moncler, S., Echikou, C., Pointaire, P. ve Bernard, J.P., (2002). Bone response to alteration of surface topography and
surface composition of sandblasted and acid etched (SLA) implants. Clinical oral implants research, 13, 5, 465-469.
• Yang, G.L., He, F.M., Yang, X.F., Wang, X.X. ve Zhao, S.F. (2008). Bone responses to titanium implants surface-roughened by sandblasted and
double etched treatments in a rabbit model, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 106, 4, 516-524.
• Bacchelli, B., Giavaresi, G., Franchi, M., Martini, D., De Pasquale, V., Trirè, A. ve Ruggeri, A., (2009). Influence of a zirconia sandblasting treated
surface on peri-implant bone healing: an experimental study in sheep, Acta biomaterialia, 5, 6, 2246-2257.
• Schwarz F, Sager M, Ferrari D, Herten M, Wieland M, Becker J. Bone regeneration in dehiscence type defects at non-submerged and
submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs.
• J Clin Periodontol 2008; 35(1): 64-75 Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent 1998;7(4):315-22
• Le Guéhennec, L., Soueidan, A., Layrolle, P. ve Amouriq, Y., (2007). Surface treatments of titanium dental implants for rapid
osseointegration. Dental materials, 23, 7, 844-854.
• Liu, X., Chu, P.K. ve Ding, C., (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47, 3-4, 49-121.
• Conforto, E., Caillard, D., Aronsson, B. O. ve Descouts, P., (2002). Electron microscopy on titanium implants for bone replacement after “SLA”
surface treatment, European Cells and Materials, 3 (Supplement 1), 9-10.